Training Mechanisms and Recovery in Sprinters
Volume 14, Issue 1 (2024)
Volume 14, Issue 1 (2024)
Training Mechanisms and Recovery in Sprinters
Apstrakt:
Top sprinters have higher body mass index, relaxed upper arm girths, thigh and calf girths, fat free mass, and
fat free mass index than the lowest tertile. Eccentric training has significant changes in body composition, while explosive
strength training improves running performance. Training mechanisms include progressive overload, specificity, periodization,
individualization, technical training, strength and power training, plyometric training, recovery strategies, and
tapering. The sprint start is a key factor in sprint results, with biomechanical performance factors. Recovery strategies
include foam rolling, active recovery, passive recovery, and contrast water therapy. Proper nutrition and supplementation
of vitamins, minerals and anti-oxidants are essential for sprinters to maintain optimal glycogen stores, muscle repair,
recovery, and growth. Collaboration between athletes, coaches, and sports nutrition professionals is needed to develop
personalized nutrition plans.
Ključne riječi:
sprint, strength, power, recovery, training
Puni tekst:
Reference:
Barbieri, D., Zaccagni, L., Babić, V., Rakovac, M., Mišigoj-Duraković, M., & Gualdi-Russo, E. (2017). Body composition and size in sprint athletes.
The Journal of Sports Medicine and Physical Fitness, 57(9), 1142–1146. https://doi.org/10.23736/S0022-4707.17.06925-0
Charron, J., Garcia, J. E. V., Roy, P., Ferland, P.-M., & Comtois, A. S. (2020). Physiological Responses to Repeated Running Sprint Ability Tests:
A Systematic Review. International Journal of Exercise Science, 13(4), 1190–1205.
Crowther, F., Sealey, R., Crowe, M., Edwards, A., & Halson, S. (2017). Influence of recovery strategies upon performance and perceptions following
fatiguing exercise: A randomized controlled trial. BMC Sports Science, Medicine & Rehabilitation, 9, 25. https://doi.org/10.1186/
s13102-017-0087-8
Girard, O., Brocherie, F., & Millet, G. P. (2017). Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review.
Sports Medicine (Auckland, N.Z.), 47(10), 1931–1949. https://doi.org/10.1007/s40279-017-0733-z
Haugen, T., Seiler, S., Sandbakk, Ø., & Tønnessen, E. (2019). The Training and Development of Elite Sprint Performance: An Integration of Scientific
and Best Practice Literature. Sports Medicine - Open, 5(1), 44. https://doi.org/10.1186/s40798-019-0221-0
Izquierdo, M., Ibañez, J., González-Badillo, J. J., & Gorostiaga, E. M. (2002). Effects of creatine supplementation on muscle power, endurance, and
sprint performance. Medicine and Science in Sports and Exercise, 34(2), 332–343. https://doi.org/10.1097/00005768-200202000-00023
Li, D., Zhang, L., Yue, X., Memmert, D., & Zhang, Y. (2022). Effect of Attentional Focus on Sprint Performance: A Meta-Analysis. International
Journal of Environmental Research and Public Health, 19(10), 6254. https://doi.org/10.3390/ijerph19106254
Li, F., Wang, R., Newton, R. U., Sutton, D., Shi, Y., & Ding, H. (2019). Effects of complex training versus heavy resistance training on neuromuscular
adaptation, running economy and 5-km performance in well-trained distance runners. PeerJ, 7, e6787. https://doi.org/10.7717/peerj.6787
Paavolainen, L., Häkkinen, K., Hämäläinen, I., Nummela, A., & Rusko, H. (1999). Explosive-strength training improves 5-km running time by
improving running economy and muscle power. Journal of Applied Physiology (Bethesda, Md.: 1985), 86(5), 1527–1533. https://doi.
org/10.1152/jappl.1999.86.5.1527
Pearcey, G. E. P., Bradbury-Squires, D. J., Kawamoto, J.-E., Drinkwater, E. J., Behm, D. G., & Button, D. C. (2015). Foam rolling for delayed-onset
muscle soreness and recovery of dynamic performance measures. Journal of Athletic Training, 50(1), 5–13. https://doi.org/10.4085/1062-
6050-50.1.01
Rumpf, M. C., Lockie, R. G., Cronin, J. B., & Jalilvand, F. (2016). Effect of Different Sprint Training Methods on Sprint Performance Over
Various Distances: A Brief Review. Journal of Strength and Conditioning Research, 30(6), 1767–1785. https://doi.org/10.1519/
JSC.0000000000001245
Slater, G. J., Sygo, J., & Jorgensen, M. (2019). SPRINTING. . . Dietary Approaches to Optimize Training Adaptation and Performance. International
Journal of Sport Nutrition and Exercise Metabolism, 29(2), 85–94. https://doi.org/10.1123/ijsnem.2018-0273
Smirniotou, A., Katsikas, C., Paradisis, G., Argeitaki, P., Zacharogiannis, E., & Tziortzis, S. (2008). Strength-power parameters as predictors of
sprinting performance. The Journal of Sports Medicine and Physical Fitness, 48(4), 447–454.
Spriet, L. L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine (Auckland, N.Z.), 44 Suppl 2(Suppl 2), S175-184.
Suarez-Arrones, L., Saez de Villarreal, E., Núñez, F. J., Di Salvo, V., Petri, C., Buccolini, A., Maldonado, R. A., Torreno, N., & Mendez-Villanueva,
A. (2018). In-season eccentric-overload training in elite soccer players: Effects on body composition, strength and sprint performance.
PloS One, 13(10), e0205332. https://doi.org/10.1371/journal.pone.0205332
Valamatos, M. J., Abrantes, J. M., Carnide, F., Valamatos, M.-J., & Monteiro, C. P. (2022). Biomechanical Performance Factors in the Track and
Field Sprint Start: A Systematic Review. International Journal of Environmental Research and Public Health, 19(7), 4074. https://doi.
org/10.3390/ijerph19074074